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We present some aspects of the fidelity approach to phase transitions based on lower and upper bounds on the fidelity 
susceptibility that are expressed in terms of thermodynamic quantities. Both commutative and non commutative cases are 
considered. In the commutative case, in addition, a relation between the fidelity and the nonequilibrium work done on the 
system in a process from an equilibrium initial state to an equilibrium final state has been obtained by using the Jarzynski 
equality. 
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1. Introduction 
 
In the last decade the study of theoretical information 

properties of quantum models [1] provides an alternative 
paradigm for understanding the critical phenomena [2]. It 
sheds light on the problems from a different point of view, 
when the standard Landau-Ginzburg approach based on 
the ideas of an order parameter and symmetry breaking is 
hampered. A prominent example is the case when 
topologically ordered phases, or Berezinskii-Kosterlitz-
Thouless phase transitions appear, see, e.g. [3,4].  In this 
approach the plausible fact that the properties of different 
macroscopic phases of matter should be encoded in the 
structure of rather distinct quantum states, both pure and 
mixed, has been put forward.  Due to its geometric 
meaning, the problem of similarity (closeness) between 
states can be readily translated in the language of 
information geometry. On this route, the generic quantity 
known as fidelity may be used to play a role similar to an 
order parameter. In the quantum communication theory, 
the fidelity is a quantitative measure of the accuracy of 
transmission for any given communication scheme. Being 
a measure of the similarity between quantum states, 
fidelity should change abruptly at a critical point, thus 
locating and characterizing the phase transition. This 
quantity was introduced by Uhlmann [5] as a finite-
temperature functional of two density matrices, 

( )11 hρρ ≡ and ( )22 hρρ ≡ , 
                                                              

( ) 2/1
12

2/1
121 , ρρρρρ TrF = ,                        (1)  

                                                      
and called fidelity by Jozsa [6], who studied  its basic 
properties in the context of finite dimensional Hilbert 
spaces (see also [2] and references  therein).  For 

concreteness and simplicity, here and below we will 
consider one-parameter family of Gibbs states 
 

( ) ( )[ ] ( )[ ]hHhZh βρ −= − exp1 , 
 

defined on  the family of Hamiltonians of the form 
( ) hSThH −= , where the Hermitian operators T and 

S  do not commute in the general case, h  is a real 
parameter, and ( ) ( )[ ]hHTrhZ β−= exp  is the 
corresponding partition function. Fidelity itself is not a 
distance, but closely related to it is the Bures distance   
 

( ) ( )2121 ,22, ρρρρ Fd B −=                    (2) 
 

which is a measure of the statistical distance between the 
two density matrices 1ρ  and 2ρ . The Bures distance (2) 
has the important properties of being Riemannian and 
monotone metric on the space formed by the family of 
density matrices. However, because of mathematical 
difficulties, it is not an easy task to evaluate the fidelity 
analytically. As a further simplification, the concept of 
fidelity susceptibility (or the second derivative of the 
fidelity) naturally appears as a tool which may be 
employed in the analytical study of phase transitions. This 
is due to the amazing fact that fidelity susceptibility may 
be related to (or estimated by) some more conventional 
physical quantities, such as imaginary-time dynamical 
responses, and reveals signatures of a phase transition [2]. 
The fidelity susceptibility ( )0ρχ F  arises as a leading-
order term in the expansion of the fidelity for two 
infinitesimally close density matrices, e.g., 

2/01 δρρρ −= and 2/02 δρρρ += . Note that the 
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fidelity and fidelity susceptibility under consideration are 
defined with respect to the parameter h , including the 
important symmetry breaking case when the system 
undergoes a phase transition as h  is varied. The fidelity 
susceptibility at the point 0hh =  in the parameter space is 
conveniently defined (in a symmetric form) as  

                                      
( )( )

( ) ( )( )
( )

.
2/,2/ln2
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:
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00
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0

h

hhhhF
h

h
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δ

δρδρ
ρχ

δ

+−−
=

→

  (3)                                                           

From the above definitions, we obtain for the case of 
two infinitesimally close density matrices the following 
relation between the Bures distance and the fidelity 
susceptibility: 
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The quantity  ( )( )0hF ρχ  is more convenient for 

studying than the fidelity itself, because it depends on a 
single point 0hh = of the parametric manifold. Physically, 
it is a measure of the fluctuations of the driving term 
which is introduced in the Hamiltonian through the 
parameter h .  
 
 

2. Commutative case 
 
In the case when ( )11 hρρ ≡  and ( )22 hρρ ≡  

commute (i.e., the operatorsT  and S  commute), there is 
a simple relation between the fidelity and the partition 
function          

( )
( ) ( )21

21

21
2,

hZhZ

hhZ
F

⎟
⎠
⎞

⎜
⎝
⎛ +

=ρρ .                      (4) 

                                                                  
This relation allows one to understand the state 

evolution at finite temperatures from the knowledge of 
thermodynamics. On the other hand, if we introduce the 
random quantity  ( )2112 ,: hhWW =  as the work done on 
the system by an outside agent in an arbitrary process from 

1h to 2h , the following equality takes place: 
 

      ( ) ( )
( )1

2
12exp

hZ
hZW =− β .                 (5)   

                                                             
The overbar indicates an ensemble average over all 

possible paths through phase space from 1h to 2h . This 
equation was first discovered in 1997 by C. Jarzynski and 
came to be known as the Jarzynski equality (see, e.g., [7]). 

It relates the nonequilibrium average work done by a 
driving force on a system, initially at equilibrium, to the 
ratio of the partition functions for the two (initial and final) 
equilibrium states. Some experimental tests of this exact 
relation of nonequilibrium statistical mechanics, 
performed on meso- and nanosystems, are discussed in [8]. 
It is easily seen that one can relate the l.h.s. of equalities 
(4) and (5). First, we use the Jarzynski equality for a 
process from 1h  to 0h  and after that for a process from 

2h to 0h . We obtain 

( ) ( )
( )1

0
10exp

hZ
hZ

W =− β  

 and                    ( ) ( )
( )2

0
20exp

hZ
hZ

W =− β . 

Next, multiplying these equalities, we get 
                    

( ) ( ) ( )
( ) ( )21

0
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2010 expexp
hZhZ

hZWW =−×− ββ .      (6)                  

                    

If we choose 
2

21
0

hhh +
= , then the r.h.s. of the 

above equality becomes exactly the square of the 
fidelity ( )21,ρρF . Here we point out that in this way the 
related nonequilibrium quantities get involved in the 
considered metric approach (at least formally). The 
question of the definition of nonequilibrium work in the 
Jarzynski equality is the main topic of the existing 
discussion in the literature, see [9,10]. One should be able 
to incorporate the phase transition phenomenon in the 
present consideration, but here we shall not go deeper into 
this rather difficult issue. Let us give a hint for this 
intricate possibility. Considering two nearby states on the 
manifold of density operators ( ){ }hρ  with 

2/01 hhh δ−= and 2/02 hhh δ+=  we shall 
introduce the fidelity susceptibility into the subject. By 
using the Jensen inequality  ( ) ( )Wββ -exp W-exp ≥  
we obtain the inequality 
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or equivalently  
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In the limit 02/ →hδ the  l.h.s. gives noting but the 

symmetric fidelity susceptibility at the point 0h , and so  
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if the corresponding limit exists. It is still questionable 
whether equation (6) and inequality (7) carry useful 
information about nonequilibrium systems without further 
examination. If we assume that  ( ) 0, 0000 == hhWW , 
we get 

                                                                             

( )( ) ( )
0

|
,

4 2
0

2
0 hhF

h

hhW
h =

∂

∂
≤
βρχ         (8)  

                                   
 which is easily derived with the aid of the relation  
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If the process is reversible and isothermal, one has 
( ) ( ) ( )hNfhNfhhW −= 00, , where ( )hf  and 

( )0hf  are the equilibrium free energies densities 

calculated with the Hamiltonian ( )hH . Here N is the 
number of interacting particles (or spins). In this case the 
second derivative of ( )0,hhW with respect to the field h  

is exactly the usual thermodynamic susceptibility ( )hNχ . 
Thus, we finally obtain 

                                                                  

( )( ) ( )00 4
hNh NF χβρχ ≤ ,             (9)  

                                                             
which in comparison with the directly derived equality 
 

( )( ) ( )00 4
hNh NF χβρχ =           (10)    

                                                             
seems a rather trivial result. We emphasize, however, that 
the initial inequalities (7) and (8) may contain much 
stronger information if one avoids this rather restrictive 
treatment of the nonequilibrium part. 
 

3. Noncommutative case 
 
In the noncommutative case, when the driving term 

does not commute with the Hamiltonian, such type of 
equalities like (4) and (10) are unknown. For the problems 
arising in this quantum case the reader may consult the 
recent review [11]. An efficient means for solving the 

problem may provide different inequalities. It is well 
known that inequalities are wide-spread and traditional, as 
a tool for obtaining important statements, both in the 
theory of phase transition and in the information theory. 
Thereby obtained results are exact and cannot be inferred 
from any perturbation approach. As a step in this direction 
we present upper and lower bounds on the fidelity 
susceptibility in terms of some macroscopic 
thermodynamic quantities, like susceptibilities and thermal 
average values, which were derived in our work [12]. In 
order our definition for the fidelity susceptibility used in 
[12] to be compatible with the definition (2) and the results 
presented below one has to make the change 

2/00 hhh δ+→  in the latter one. The following 
expressions for the fidelity susceptibility are the basic ones 
for our consideration: 
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or equivalently  
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where we assume that the Hermitian operator 
( ) ShThH 00 −=  has a complete orthonormal set of 

eigenstates n| , ( ) nEnhH n ||0 = , where 

,...2,1=n , with nondegerate spectrum }{ nE , 

( )
2

nm
mn

EEX −
=
β

 and 
0ddd SSS −=δ , dS  

being the diagonal part of the operator dS . As usual 

( ) nnh
n

n |...|:... 00 ∑= ρ . In this basis the density 

matrix ( )0hρ  is diagonal too: 

( ) ( ) ,...2,1,,|| ,00 == nmhnhm nmm δρρ  
 

Relations (11) and (12) tell apart the classical 
contribution and the quantum contribution. The second 
term takes into account the generic noncommutativity  of 

1ρ   and  2ρ  in definition (1). With the help of the 
inequality  
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one obtains  from eq. (11)  
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( )( ) ( )( ) ( )
0
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00 8 d
G
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where ( )( )0hG
F ρχ  is the alternative definition  of  the 

finite-temperature generalization of the fidelity 
susceptibility introduced in [13]. Inequality (13) is a little 
bit stronger version of the similar inequality obtained in 
[13]. With the help of the elementary inequalities  

( ) 1coth
3
11 12 ≤≤− −xxx , from eq. (12) one obtains 
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where ( )( )0hN ρχ  is the usual thermodynamic 

susceptibility defined as 
( )
( ) 02

0
2

|][
=∂

+∂
− hh

hhHf
δδ

δ
  and 

( )[ ]hhHf δ+0   is the free energy density of the N - 
particle system described by the Hamiltonian 
( ).0 hhH δ+   Inequalities (14)  imply that if the term 

with the double commutator in the l.h.s. is finite, a 
divergence  in NNχ  must lead to a divergence in Fχ  and 
vice versa.  
 

4. Applications to specific models and  
    comments 
 
In our paper [12] some of the above obtained bounds 

were tested on concrete models. The quality of the bounds 
was checked by the exact expressions for a single spin in 
an external magnetic field. We also considered two 
examples of popular many-particle models: the Dicke 
superradiance model and the single impurity Kondo 
model. The Dicke model is commonly used to illustrate 
how an atomic ensemble spontaneously emits 
electromagnetic wave with an intensity proportional to the 
square of the number of atoms 2N  rather than to N , as 
one would expect if the atoms  radiate incoherently.  
Recently there is a renewed interest in this issue due to 
studies of the existing superradiant phase transition in the 
context of quantum entanglement (see, e.g. the review [14] 
and references therein).  The Kondo model believed to 
described a rich variety of physical phenomena, e.g. 
quantum phase transitions, non-Fermi liquid behavior, 
nonconventional  superconductivity, etc.,  (see [15]). 
Recent considerations have shown that the Kondo model 
and its generalizations  are attractive candidates for 
quantum information processing [16]. In both models, the 
calculations showed the breakdown of perturbation theory 
as the temperature is reduced.  That is why they present 
exactly the cases when the inequality approach can be 
used in order to obtain instructive results.  

Here we have shown that a Jarzynski tape relation, see 
(6), between the average exponentials of the corresponding 

thermodynamic works and the square of the fidelity takes 
place in the commutative case.   A further implication of 
this equation is inequality (7) which estimates a metric 
quantity, the fidelity susceptibility, through nonequlibrium 
thermodynamic ones.  In the noncommutative case, we 
have established bounds (14) on the fidelity susceptibility 
which are expressed in terms of equilibrium 
thermodynamic quantities. One can infere from (14) that, 
as far as divergent behavior is considered, the fidelity 
susceptibility and the thermodynamic susceptibility are 
equivalent for a large class of models exhibiting critical 
behavior. A sufficient condition for this is the term with 
the double  commutator  in (14)  to be finite. 
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